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On the Asymptotic Convergence of Collocation 
Methods With Spline Functions of Even Degree 

By J. Saranen and W. L. Wendland* 

Abstract. We investigate the collocation of linear one-dimensional strongly elliptic integro-dif- 
ferential or, more generally, pseudo-differential equations on closed curves by even-degree 
polynomial splines. The equations are collocated at the respective midpoints subject to 
uniform nodal grids of the even-degree B-splines. We prove quasioptimal and optimal order 
asymptotic error estimates in a scale of Sobolev spaces. The results apply, in particular, to 
boundary element methods used for numerical computations in engineering applications. The 
equ'ations considered include Fredholm integral equations of the second and the first kind, 
singular integral equations involving Cauchy kernels, and integro-differential equations having 
convolutional or constant coefficient principal parts, respectively. 

The error analysis is based on an equivalence between the collocation and certain varia- 
tional methods with different degree splines as trial and as test functions. We further need to 
restrict our operators essentially to pseudo-differential operators having convolutional prin- 
cipal part. This allows an explicit Fourier analysis of our operators as well as of the spline 

spaces in terms of trigonometric polynomials providing Babuska's stability condition based on 
strong ellipticity. 

Our asymptotic error estimates extend partly those obtained by D. N. Arnold and W. L. 
Wendland from the case of odd-degree splines to the case of even-degree splines. 

1. Introduction. In this paper we investigate the asymptotic convergence of the 
collocation method using even-degree polynomial splines applied to strongly elliptic 
systems of pseudo-differential equations on closed curves with convolutional prin- 

cipal part. The collocation here employs the Gauss points of one-point integration as 
collocation points which corresponds to the usual boundary element collocation in 

applications [5], [12], [17], [19], [26], [31], [34]. This is in contrast to the method 
investigated by G. Schmidt in [29] where one collocates at the break points of 
even-order splines. 

The asymptotic convergence properties for the standard Galerkin method with 

splines of arbitrary orders are well-known [22]. For the collocation method, however, 
asymptotic convergence, up to now, has been shown for strongly elliptic systems 
only in the case of odd-order splines by D. N. Arnold and W. L. Wendland [7]. 

Received November 22, 1982: revised May 2, 1984. 
1980 Mathenlantics Subject Classificaution. Primary 65R20; Secondary 65L10, 65N35, 45J05, 45F15, 

35S99, 30C30, 73K30. 
*This work was carried out while the first author was an "Alexander von Humboldt-Stiftung" research 

fellow at the Technical University of Darmstadt during the academic year 1981-82. 
The second author wants to express his gratitude to Professor Dr. C. Johnson and the Department of 

Applied Mathematics and Computer Science since the discussions during his visit in 1982 at Chalmers 

University have been very stimulating for our results, in particular in connection with (3.19). 

:D1985 American Mathematical Society 
0025-5718/85 $1.00 + $.25 per page 

91 



92 J. SARANEN AND W. L. WENDLAND 

Collocation with even-order splines at the Gauss points has been investigated only 
for Fredholm integral equations of the second kind [27]. Here we investigate the 
much wider class of strongly elliptic systems and we show asymptotic convergence of 
optimal order for even-order spline collocation. 

These approximations are widely used in engineering numerical analysis as 
boundary element methods for two-dimensional stationary or time-harmonic interior 
and exterior boundary value problems as well as transmission problems. The 
corresponding boundary integral operators belong to various different classes. 
However, the Fourier transform became an appropriate tool and now the theory of 
pseudo-differential operators provides the framework for a unifying mathematical 
analysis. Since this modern part of analysis is rather new, it is not yet general 
knowledge, although it provides the common basic properties of differential as well 
as integral operators including the whole variety arising in the boundary-value 
problems of many engineering applications. 

Our convergence results assure, in particular, optimal asymptotic convergence for 
piecewise constant spline collocation for equations of negative order as, e.g., Symm's 
integral equation of the first kind [31] and its generalizations [15], [19], [20], [21], 
[26], [34], [35]. For this equation preliminary convergence results can be found in [1], 
[2], [5], [14] and [33]. Our strongly elliptic systems with convolutional principal part 
contain, in addition, systems of integro-differential equations [3] (see [7]) with 
constant coefficients, certain singular integral equations, in particular, those of plane 
elasticity [7, Appendix], [24], [25], [26], [34], Fredholm integral equations of the 
second kind [6], [8], [11], [12], [13], [17], [27], [35], and also the integro-differential 
operator of Prandtl's wing theory [16], [17], [18], [24], [35]. 

Our rigorous error estimates cover the case of even-order splines left open in [7] 
for the above subclass of strongly elliptic equations. Our analysis is based on the 
reformulation of the collocation equations as equivalent Galerkin-Petrov equations 
with different splines as test and trial functions. In order to secure the BabuIska 
stability conditions with the help of strong ellipticity, we now need to assign an 
appropriate test spline of degree d + 1 to any choice of trial spline of degree d. The 
construction of this mapping Q was suggested by the ellipticity condition in 
connection with the finitely Fourier transformed splines. 

The general pseudo-differential operators on closed curves have a particularly 
simple action on Fourier series [4], [28]. Therefore, we shall restrict our formulation 
to the corresponding manipulations with the Fourier coefficients, avoiding the close 
connections to the general theory. In this case our assumptions can be formulated 
without the theory of pseudo-differential operators solely in terms of the action on 
Fourier series, and the inexperienced reader can start with property (2.10) and 
Section 3. However, the theory for elliptic pseudo-differential operators is behind the 
ideas of our proofs and will be decisive for an extension of the convergence results 
from the present case of constant coefficients to the more general equations involving 
variable coefficients. 

Our analysis is performed in the space of Fourier series; we first analyze the 
Fourier series of the spline functions finding periodic recurrence relations for their 
Fourier coefficients. This analysis, with an appropriate choice of spline bases 
interpolating trigonometric polynomials, allows us to define the above-mentioned 
mapping Q, which provides, in combination with strong ellipticity, the Babuwska 
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stability conditions. The latter yields optimal-order convergence in the associated 
energy norm. In addition, we apply the Aubin-Nitsche duality arguments as in [7] to 
obtain super approximations. For simplicity, we develop this analysis first for just 
one equation and then extend our results to systems in Section 3.2. 

The authors want to thank Prof. Dr. D. N. Arnold and the referee of the first 
version for their helpful remarks. 

2. Applications. The range of applications of our result already covers a relatively 
large set of integro-differential equations, singular integral equations, etc., acting on 
functions which are defined on closed smooth curves in the two-dimensional space. 
Our convergence proof is based on an explicit Fourier representation (formula 
(2.10)) of the operators in question, which is assumed in this work, and whose 
validity for pseudo-differential operators is given in [4] and [28] (Theorem 2.1). In 
most applications this representation can also be obtained by direct computations. 
For classical pseudo-differential operators, only the principal symbol a(() [30], [32] 
needs to be known in order to have the Fourier representation. Here, our main 
results are formulated without referring to pseudo-differential operators. But be- 
cause of the above-mentioned connection we mention the main types of applications 
and for our analysis we need to write out the corresponding principal symbols. 

The equations to be discussed are of the form 
(2.1) Au + Bo = f, Au = /3, 
where the vector-valued function u = (ui,...,up) and the vector X E C q denote 
desired unknowns, and f = (fi, ... ,fp), as well as 3 Ee Cq, are given. Moreover, A is 
a system of integro-differential operators or singular integral operators or, in 
general, pseudo-differential operators, respectively. B and A are matrices of ap- 
propriate functions or functionals, respectively, B: C -(Ht') P and A: (Ht2) 

Cq, where Ht' denote Sobolev spaces to be specified later on; see [35]. 
For the convergence of the collocation method, our main assumption for the 

operator A will be strong ellipticity and that the principal part is a pure convolution. 
In the framework of pseudo-differential operators this means that the principal 
symbol a = a(t) depends only on the Fourier transformed variable (, and that there 
exist a regular complex-valuedp x p matrix e and a constant ao > 0, such that 

(2.2) Re tTEa( )f >? U0112 for t = ? 1 and ' Ee CP. 

Moreover, a(() is a positive-homogeneous function of degree 2 a. 
This class of equations (2.1) contains the following more special examples; see [7, 

Section 2.3]. (There, one also finds references to corresponding applications.) 
2.1. Integro-Differential Equations With Cauchy Kernel and Constant Coefficient 

Principal Part. These equations are of the form 

A Udru 
-A 

dJu 
A0 ds" + E A j d(s) J=0~~ds 

i t ( tmu - Id J u d_ __ _ (2.3) +-i CO c (T) + C (T) 

J () dT ' ) '-Z(s) 

q 

+ f L(s, T)u(T) dT + E CokBk(S) = f (S), 
k=1 
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where ' = zl(T) + iz2(T), AO, C0 are constant p x p matrices, and where s, respec- 
tively T, denotes the arclength on r. The principal symbol of this operator is given 
by the matrix-valued function [3] 

im= jtfm AO + C0o) for II > 1. 

2.1.1. The Case of Even m. In the case when m is even, a = m/2 is a nonnegative 
integer and the strong ellipticity condition (2.2) now reads 

(2.4) (-1)aReT0(Ao ? C0)A > aoI12, 

which must hold for both signs and is equivalent to 

det(A0 + XCO) # 0 for all X E [-1, +1]. 

Note that this condition precludes the possibility that det Ao = 0. 
In the special case C 0 and L 0 the operator in (2.3) reduces to a system of 

ordinary differential operators of even order 2a. The ellipticity condition is definite- 
ness of the leading coefficient matrix AO, and our results provide new error estimates 
for the collocation of periodic ordinary differential equations with periodic side 
conditions by even-degree splines provided the principal part of the differential 
equations has constant coefficients. 

Singular integral equations. In the case a = m = 0, (2.3) reduces to a system of 
singular integral equations with Cauchy kernel. Up to now for these equations only 
collocation by splines of odd degree has been investigated [7]. But note that G. 
Schmidt [29] proves optimal-order convergence results with even-degree spline 
collocation at the break points for Eqs. (2.3) if 

det (XA0 + C0) # 0 for all X E [-1, 1], 

which is a somewhat complementary class of equations to ours. 
Singular integral equations with constant principal coefficients satisfying (2.4) 

occur, e.g., in plane elasticity [7, (2.3.7)], [24], [25], [26], [34]. 
Fredholm integral equations of the second kind. A further specialization of (2.3) to 

the case m = a = 0, A0 = I, C0 0, yields the Fredholm integral equations of the 
second kind 

u(s) + f L(s, Tr)u(Ti) dTr + B(s)w = f(s), Au = . 

The principal symbol a is here the identity matrix, so the equations are trivially 
strongly elliptic and our results apply. However, they can be obtained in this case 
from well-known results [6], [13] in combination with approximation estimates (3.25) 
as in [27]. For the numerical treatment and further convergence results see [8] and 
[11]. 

Our error estimates apply, in particular, to the method in [12] for C1-piecewise 
quadratic splines (i.e., third-order splines), if F is smooth and either the Dirichlet or 
the Neumann problem is solved for the Fredholm integral equations of the second 
kind in acoustics (see [35] and references given there). 
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2.1.2. The Case of Odd m. Here, let us recall the presentation in [7] and turn to 
systems involving operators of the form (2.3) with odd order m. Then a - = 

(m - 1)/2 is a nonnegative integer and instead of (2.4) the strong ellipticity 
condition is 

(2.5) (-1) 1/2 ReitTE(?AO + C > 
ao|12' 

which again must hold for both signs. Condition (2.5) is equivalent to 

det(XAO + CO) # 0, X E [--1,1]. 

Hence, in this case of odd order m, det CO cannot vanish. 
An example is given by the normal derivative of the double-layer potential, that is, 

the operator defined by 

cou(s) J U(T) r) (log lz - D1) dT 

(2.6) 

= r1(U(T) - U(S)) aaa(o z-t)dT9 

z = z(s) and t = z(T) on r,, which plays an important role in classical potential 
theory. Equations of the form 

Al(s)u(s) + Cou(s) + -j C(s, Tr)u(T) 
d 

(2.7) + f L(s, T)u('T) dT + Bw = f(s), 

Au = /, 

= z(T) on r, have been used more recently in acoustics and electromagnetic fields 
and corresponding numerical treatments, [16], [17], [18], [35]. Employing the 
Cauchy-Riemann equations and integration by parts, (2.6) can be rewritten as 

(2.8) Cou = -Re X du (T) (d (s) dz (T) d) 

whose principal part is given by 

1hr du0 id' 
1s J dT ()D- z(s) ' 

which is the famous Prandtl integro-differential operator of wing theory; [24] and 
[25]. From (2.8) we see that (2.7) is a specialization of (2.3) to the case AO = 0, 
CO = -i, m = 1 and the principal symbol is 141. Hence (2.7) is strongly elliptic and E 
in (2.5) can be taken to be the identity. 

2.2. Fredholm Integral Equations of the First Kind With Logarithmic Principal Part. 
A large class of interior and exterior boundary-value problems in two dimensions 
can be reduced to systems of the form 

--f (log Iz(s)-z(T)I + L(s, ))u(rT) dT+ B(z(s))w =f(z(s)), 

(2.9) 
f A(T)u(T) dT = , 
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where the kernel L is smoother than the logarithmic principal part. For this operator 
the order is 2a = -1, and the principal symbol is a(()= I-II, so the operator is 
strongly elliptic (and E = I). Applications with (2.9) can be found in potential 
theory [1], [19], [20], [31], flow problems [15], [20], [21], acoustics [17], [34] and 
elasticity [7], [26], [34]. 

Our convergence results assure for the first time the convergence of the numerical 
methods in [31], where piecewise constant trial functions have been used, and in [19] 
and [26], where piecewise quadratic splines have been used for (2.9). 

2.3. Fourier Series Representation. Let 

Z = (Zl(9), Z2(9)) 
- 

Z1(9) + iZ2(9) 

be a regular parametric representation of F, where z is a 1-periodic function of the 
real variable 9 with Idz/d9l ? 0. Then every function on F can be identified with its 
1-periodic image depending on 9. More generally, for a system of mutually disjoint 
Jordan curves F = U' 1 F, we may parametrize each of them and identify functions 
on F with L vector-valued 1-periodic functions of 9. Hence, without loss of 
generality, we may consider systems (2.1), where all functions, respectively, distribu- 
tions, are 1-periodic depending on 9. 

Since all 1-periodic distributions can be represented in the form of Fourier series 

u = E t,,e in2w, 9 E R, 
nEZ 

we shall now characterize the class of operators to which our results apply by means 
of the Fourier representation. Simple examples of such operators are given by the 
Hilbert transform defined by the Cauchy principal-value integral 

Hu = p.v. V e(O77) = EI unsign(n)ein27T 

where 

sign(n = +1 for n > 0, sg( _ for n<0, 

which has the principal symbol a(H, () = {/11 and by the simple layer potential 

Vu(9):= 2 1 log le i2wffl e i2wo lu(Ap) do 1 U e in2wO 

which has the principal symbol a(V, t) = 1/1t1, [20]. 
We define the operators 

Pa L n2u)1ei727T + e UO and P-iu = , InIa^nin2 r 
11>0 1t<0 

In the following, Hs denotes the periodic Sobolev space of arbitrary real order s, i.e., 
the closure of all smooth 1-periodic functions with respect to the norm 

If is:= Ilf IIH':= (fzoI2+ f ? ^n z 7.j2fn12s)/n 

where i,, are the Fourier coefficients. We denote the inner product in this space by 

g),:= 
A A f1g2ni2s. fos =0go 

+ 
f ,?_ gnz 2 Tn 

0 =*itE=-Z 
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Note that this inner product extends to a duality pairing between H"'+ and H` 
for arbitrary real a, and, moreover, 

sup 
KI( W)SI = llv 11 +a v G Hs+a. 

w eWa IIW11s- a 

Clearly, HS is continuously imbedded into H' for s > t (see [23, p. 37]). 
In the following our crucial assumption on the operator A: Hs HS- 2a will be 

that it has the decomposition 

(2.10) A = a+P2+c + a -P + K, 

where K: Hs - Hs-2a is compact. Clearly, the operators H and V already have the 
form (2.10). Similarly, the integro-differential equations (2.3) take the form (2.10), 

d lU .- d 'lU .- 
A dHm (27Ji)` + CoH [A (2Tiy) 1 + K1u 

= (Ao + CO)Pm+u +(-1) m(AO - CO)Pmu + K2u 

after multiplication by Idz(O)/dOI(2ri)-Yn, as do the equations of the form (2.9) 
after multiplication by 2Th/1dz/dOl, since 

--|jlog|z(s) - z(T)IudT = Vu + K3u, 17 l~~~~~dzId9j 
where K, denote compact operators. 

From the point of view of the general pseudo-differential operators on the unit 
circle we can use the following result [4], [28]. 

THEOREM 2.1. Let A: Hs - Hs -2a be a pseudo-differential operator with a positive- 
homogeneous principal symbol of real order 2a. Then A has the representation 

A = a?PA+ + a-Pia + K, a+= a(1), a= 

where K: Hs - Hs-2a is a compact operator. 

Of course, Theorem 2.1 applies also to systems of pseudo-differential operators of 
the common order 2a. 

3. The Convergence of the Collocation Method. 
3.1. Single Equations Without Side Conditions. For simplicity we consider first the 

special case of (2.1) of just one equation with B, A and /3 all = 0 and A a given 
operator of the form (2.10). Hence, we shall investigate the approximation of the 
equation 

(3.1) Au=f 

by the standard collocation method. To this end, we select an increasing sequence of 
mesh points 

xj = jh withj=O,1,...,N; A-{x1}, 

with N running through the natural numbers. 
In addition, we introduce the nodal points 

tj = 
J2 h, j = 1.. 

N;j 
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By Sd(A ) we denote the space of all 1-periodic, d - 1 times continuously differentia- 
ble splines of degree d subordinate to the partition A if d > 1. By SO(A) we denote 
the corresponding step functions. Correspondingly, we shall also need Sd(A) with 
d = d + 1. 

The collocation method for (3.1) is: 
Find u, E Sd (A) such that the collocation equations 

(3.2) AuA(t1) =1 (t), j = 1,.. .,N, 

are satisfied. 
Since Sd(A) C Hd+l/2- with any e > 0, AuA will be continuous under the 

assumption 

(3.3) d > 2a. 

(Although this condition seems to be rather natural, it often is too restrictive for 
practical computations.) 

For our error analysis we shall now write the collocation equations in the form of 
modified Petrov-Galerkin equations with different test and trial functions. Theorem 
2.1.1 in [7] yields: 

LEMMA 3.1. Let d > 0 be an even integer and let u E H-j+` /2. Then the collocation 
equations (3.2) are satisfied if and only if 

(3.4) ((I - J + J)Au,, 4)j = ((I - J + JAj)Au, 4)j for all Sd+4(A), 

wherej = d/2 + 1 and 

J 1 ~~~~N 
Ju:= u(x)dx and J.,u:= >hu(t1). 

0 1=1 

Clearly, the equations (3.4) are modified equations of a Galerkin-Petrov method to 
find w, e Sd(A) such that 

(3.5) (AwA,, 4), = (Au, 4.), for all . E Sd+?(A&). 

Since Sd(A) C Hd+l/2-e for any E > 0, we have with e = d/2 - a viz. (3.3), that 
Sd(A) C H1+` 1/2. Correspondingly, Sd+ l(A) C H 7+a- 1/2. Therefore, the sesqui- 
linear form (3.5) is continuous on H'+a1"2 x H.j+a+'/2 

The following theorem provides stability of the method (3.5). 

THEOREM 3.2. Let A have the special form 

A = aP2? Pia - withRea+>O,Rea >O, 

i.e., A is strongly elliptic. Then there exists a positive constant y such that the Babuska 
stability condition 

(3.6) inf sup f(Av, ?)X|j y 
IE=,S,d(A) 4ES+1(4) 

I'IIj+a- 1/2=1 114M ija+ 1/2=1 

is satisfied. 

Proof. For Sd(A) and Sd+?(A) we shall use the special spline bases as defined in 

[9, Chapter 4]. Let X be the characteristic function of [0, 1) and let 
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denote the d-fold convolution of iT. Then the B-splines 

IT [7d+1?(t/h-j + 1) for(j- I)h < t < (j- )h + 1 
'/(t) <(and the 2-periodic extension,] = 1, ... ., N, 

form a basis of Sd(A) and, correspondingly, 

4d+1(t):= Vd+1 t + 
h 

1, ....~Ni 

form a basis of Sd+?(A). 

In order to prove the assertions (3.6) we shall investigate the Fourier coefficients 
of the splines. The combination of the convolutions in (3.7) with Fourier transforma- 
tion provides us with the property 

(Ahd )s+ = ( +N) (V}) for n = O modulo N. 

Therefore, we find for any natural I and any v E Sd(A) that 

(3.8) (b)tz+ N= (4+,N)(v),, for n + O modulo N. 

For 0 # n = IN we find (bj),1 = 0 and, accordingly, 

(v) =0 for 0 # n = IN. 

Besides v1, we introduce a new basis in Sd(L) and Sd+,(A), respectively, by using 
the finite Fourier transform. Specifically, we define 

N 

wd(t) = E eik21riv/(z), k = 0,1,...,N - 1, 
,j=l 

(3.9) N 

,Wd+l ( t e ikt2Xffd(t. k = O, 1, .....,N - 1. 
/j=1 

Then { wd) } N1 is a basis of Sd(A) and { kd+ 1 'NIis a basis of Sd+ 1(A). We have 

v-d ( t) = ( Th * Wd ) (t + 
? 

where vh(t) =h-IT(h-1t). 

For the Fourier coefficients of these new basis functions we calculate 

(Wk ) t=ei/( 7-h )(Wk 

(3.10) = / T sin( N )()Wk,, for n + O and 

t(wk lo for n = 0. 

Moreover, we obtain by (3.9) and by 

()= i2<)n(l -j)IN( Ad) 

with an elementary computation the recurrence relation 

Ad),,= {1E [ei(k n)2X/N].j}ei(n21/N-ki/N)(Ad) 
j=l 

f0 for k-n IN, / IE Z, 
\N( ()V1ei(n2 , N k/N) forn = k + IN. 
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In particular, if for n E Z we denote by [n] the unique integer [n] e 0, 1,..., 
N - 1 } such that n = [n] + IN for some 1 e Z, then the above relation can be 
written as 

(Wk S} k[n7] (W[n)n' 

Accordingly, for any v E Sd(s) with 
N-1 

(3.11) V = CW 
k=O 

we find for the Fourier coefficients 

(3.12) (u) It= C[n] (W[11]) n- 

Correspondingly, if 
N-1 

(3.13) d = E d+l 
- 

Sd+ 
k=O 

we obtain from (3.10) and (3.11), the relation 

(3.14) (A) = n7i N d[(w[n forn n 0, 
do for n =0. 

With v in the form (3.11) we have, by (3.12), the explicit representation 

(Av)(t) = aY+co + a+ n22c[d](w]) ein2t 

n>0 

+ 0- Y, I n 12,C d 
W,) in2vt. 

11<0 

Thus, we have for the bilinear form 

(3.15) (Av,)j =a + co0O +(27 )2 a n n sin N C[nd(1n] W[n]) n 

(27r ino n g N sin N c[n]d[n] w[n])n[ 

11<0 

In order to show the inequalities (3.6), we choose for any v e Sd(A) the test 
function 4 E Sd+ 1 (1) by taking 

Ck fork = 1, ... ,N-1, 
(3.16) dk = sin kr/INI 

co fork = 0. 

With this choice of 4 we have, by (3.15), 

(Av,4> = a?1c2 )2j-la 2(a+J) 
- I Ad 

2 

11>0 

smn *m (3.17) ? (2)2T n El(?)1(nl) IC-n 
( 

dn)-n 
11>0 

n1 
? 

niN 
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where 

(n) 1 for 0<n N-lmodulo2N, 
\-1 forN +? 1 n < 2N -1 modulo2N. 

We first study the sum ?+ in (3.17) collecting all terms modulo 2N. Then, 
oo N-1 2 

?+= L E (I + 2kN) 2a+2j- Ic (wd )1 12kN 
k=O 1=1 

-(I +(2k + I)N)2a?2j1ICI(V)d(2k 1)N2 } 

By the recurrence relation (3.8) we are able to write 

(3.18) 
oc N- I o s d-2a+1l 2 

~ (I ? 2kN) a211 (, k1))d 2a 1 2 ?=E 1 +( 
+ 

(2k+/lp + 81)N AICI( 'I 1+2kN} ) 

Since d - 2a + 1 > 1, we have a lower estimate by taking only k = 0 in (3.18), i.e., 

N-1 d /\d 2a+l- 
(3.19) ?~+> 12a+2j-1 I_1 -( 

Ad 

]|l(II2 

(3.19) = 
N-1 

>- K 
j 

2a+2j-1ICI(Vld) | = KE + 

1=1 

where K = (1- (1)d-2a+1) 

In the same way we estimate the second sum ?- in (3.17) by 

N-1i 2 

(3.20) K 12a|2j IICN_l( WN- l) | = KY- 
/=1 

On the other hand, we have for the trial function v given by (3.11), 

IIV1Ia+i-1/2 =2 c (2 )2a +2 j-1 fI2a+2jlIC [( )d ) 12 

(3.21) 
2 2 2j N 

=Col2 +( 2a 

where we find for the sum ? by (3.8) 
00 N-1 / 2d+2 2 

? = E E (1? kN)La?l( + kN) {Ic(i +), ? CN I(WNI)-11 
(3.22) k=O /=I (3.22) = = 

N-i d 2 ? C2 ?( 1 d-2a+1 = 12a+2j-1ic(l / IC(ViI N_.I(N A -/d E (/+k 

For every 1 < / < N - 1, we apply for an upper bound 
0 i d-2a+l 0 1 d-2a+l 

E=t+N < tl+k =5 s o' 
which yields from (3.22), 

(3.23) ? < s(j+ + ?o). 
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By combining the formulae (3.17), (3.19), (3.20), (3.21) and (3.23) we achieve with 
the strong ellipticity Re a (1) > 0, the relation 

(3.24) K(Avy ,)jj > Re(Av, ).j > yIIv IIa+j-1/2, 

where y = min(Re a, S -s(2 7 )-2a Re a, KS -1(2 7T)- 2a Re a) 

On the other hand, we have by (3.14), (3.16) and (3.12) for the Fourier coefficients 
of the test function p, the formula 

1(0).7=1 |c[n,t[]" 1 nl (v) n 0 0, 12ni 
W[ 

127 

and 

($)o= (A)O. 

It therefore follows that 

|IV lla+j-1/2 = 11| IIa+j+i/2, 

which yields, by (3.24), the estimate 

I ( AV, 4)jl > YIIVIIa+j- 112jjl 1l!a+j+ 1/2. 

This implies the validity of the stability condition (3.6). El 
In order to derive the convergence results we now recall the following properties 

of the family of spline spaces (see [7, (2.1.4) ff. and (2.1.30) ff.]). 
Approximation property. If -oo < t < s < d + 1 and t < d + 1/2, there exists a 

constant c depending only on t, s and d, such that 

(3.25) inf |lu - k1lt < chs-tlluIls, u E Hs. 
4E Sd (A) 

This implies for t < d = 1/2, 

(3.26) lim inf llu - lt= 0, u E Ht. 
h-O GESd(LA) 

Since the family of meshes is uniform we also have the 
Inverse property. 

(3.27) |lvilo < chTUllvllT, V E Sd( ) 

for every T < a < d + 1/2. 
This will be needed to achieve the error estimates with respect to the norms higher 

than + a - 1/2. 
For the spaces Sd+ (A) there hold the corresponding properties. 
Here, and for the following proof, it is convenient to introduce the notation of the 

j-adjoint B* of any bounded linear operator B: Hs - H'. For any j E R the 

j-adjoint B* is uniquely defined by 

(Bu, v)j = (u, B*v)j, u E Hs, v E H2j-t 

and B*: H2'j' 
- t H2i-s is bounded. If K: Hs -- H' is compact, then thej-adjoint 

K*: H 2i- t- H21js is also compact. 
Now we are able to show the Babu'ska stability conditions (3.6) also for the more 

general operator A as given in (2.10). 
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THEOREM 3.3. Let A: Hi+a-1/2 Hi-a-l/2 be an isomorphism and 

(3.28) A =a+P2?a + _Pf, + K =:AO + K with Re , Re a-> 0, 

where K: HJia 1/2 - Hi- 1/2 is compact. Then there exist two positive constants y 
and h 0 such that for every 0 < h < h 0 the inequality (3.6) is valid. 

Proof. We first note that the j-adjoint A* = A* + K*: Hi+a+1/2 - Hi-a+/2 is 

an isomorphism since it is one-to-one and has the Fredholm index zero. By the same 
reason one verifies that the mapping I - (A*)-1K*: HJ+a+1/2 - HJ+a+1/2 also is 
an isomorphism. Let Ph be the orthogonal projection Ph: H+"+1/2 -* Sd+ 1(A). For 
a given element v E Sd(A) there exists, by Theorem 3.2, an element 4 E Sd+e(Aj), 
such that 

(3.29) I(AOv, 0)jJ > Y"1101j+.-112 110 11j+a+1/21 
where y' > 0 is a constant independent of v and 4 (e.g. y' = y/2). To 4 we choose 
the element 4, E Sd+ (A) by 

4 = 4-Ph(A*) 1K*4. 

Then, we have 

(Av, ipj = (Av, 4)- (A*)y1K*4 )j + KAv, (I - Ph)(A*)-'K*4)j 

= (Aov, )j + (Av, (I -P)(A*) K*(p 

Since (A*)-1K* is a compact operator in Hi+` 1/2, it follows from the approxima- 
tion property (3.26) applied to Sd+l(A), that 

(3.31) | |( - Ph)(A*)-'K* | = e(h) -O 0 if h -O 0 

with respect to the operator norm [13, Hilfssatz 3]. 
Now, (3.29), (3.30) and (3.31) yield for 0 < h < h1 with a suitably chosen h1 > 0, 

I (Av, A)jl >r) (Y2 )IVIj+.-1/211I+I!,++1/29 

which in turn implies the required inequality (3.6) 

I ( Av, {)jl (3 ) lV11j a -11211QJl+ a +1/2 
for all 0 < h < ho if ho is chosen small enough. 0 

Finally, we consider the operators AA:= (I - J + J,)A: Hia-1/2 Hi-a-i!2. 

These are uniformly bounded with respect to the discretization parameter 0 < h < 1 
[7]. Thus, the sesquilinear forms 

( AAu, 4)j for ( u, 4)) E Hi + a1/2 X Hj - 1/2 
are uniformly bounded. Moreover, we can show 

THEOREM 3.4. Let A: Hi+ a- 1/2 Hi- - 1/2 be an isomorphism as in Theorem 3.3. 
Then there exist two positive numbers y1 and hl, such that for all 0 < h < hl, the 
Babuska stability condition 

inf sup K(AAv,)j 1> yl 
.G,5s1(A) +s, + I) 

+n -- 
1/2 = 1 

11j+ a + 1/2 

is valid. 
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Proof. It suffices to observe that with the trapezoidal rule 

K(AAv, p)j > |(Av, p)j - I(J - JA)AvI 1(1, 0) 

I ( Av, 4)j -ch12 lAvll1/211 L+?a?+ 1/2 

> (y - ch"'2) IIv LV+?a-1/2 
- ll E a+1/29 

because of (3.3), and to apply Theorem 3.3. El 
As a consequence, we have the quasioptimal asymptotic convergence for the 

approximate solutions. 

THEOREM 3.5. Let the assumptions of Theorem 3.4 be valid. If u E HI+a- /2 then 
the collocation equations (3.4) have a unique solution uA E Sd(? ) if O < h < hl, and 

(3.32) IIu - uAll+a-1/2 < C inf IIU -VII+a 1/2. 
Sd (A) 

In particular, if u E Hs, j + a -1/2 < s < d + 1, then for j + a - 1/2 < t < s, 
t < d + 1/2 we find the asymptotic error estimate 

(3.33) ||u - u1 I chs -tul|U|s . 

Proof. The quasioptimality (3.32) follows by the previous theorem from Cea's 
lemma [10, Theorem 6.2.1, p. 186]. The approximation property (3.25) then implies 
the estimate (3.33) for t j + a - 1/2. As usual, the inverse property (3.27) finally 
yields the statement (3.33) for the remaining values of t. El 

By using the Aubin-Nitsche duality argument we can show higher-order conver- 
gence for the error measured by the norms of lower order than j + a - 1/2. The 
proof is analogous to that of [7, Theorem 2.1.6], and therefore will be omitted. As in 
[7] we say that an isomorphism B: Hi+a+l/2 Hj-l/2 is s-regular, s > j + + 
1/2, if B'1 maps Hs-2G continuously onto Hs. Then, we have 

THEOREM 3.6. Let t E [2a, j + a - 1/2] and assume that A* is (2(j + a) -t)- 
regular, where A is an operator as described in Theorem 3.3. In the case t < 2a + 1/2, 
j - a - 1/2 > 2, we also assume that A maps H2+2a boundedly into H2. Then the 
A ubin-Nitsche trick provides the following superapproximation estimate: 

iiu- u llt chj+a-l/> u- Jj+a-1/2 

Consequently, if u E Hs,j + a -1/2 < s < d + 1, there holds 

ltu - ujII < chs'lulls. 

Finally, in terms of the pseudo-differential operators considered here, we have 

THEOREM 3.7. Let A be a strongly elliptic pseudo-differential operator with a 
positive-homogeneous principal symbol a(() of degree 2ga. Further, let A: HiJ?a+1/2 
Hi-a/2 be an isomorphism. Then the statements of the previous Theorems 3.5 and 
3.6 are valid with A. 

Proof. It suffices to observe that the collocation equations (3.2) are equivalent to 

(E)AuA)(tj) = (E)f )(tj), j = 1,...N, 

where EA has the representation (3.28).The regularity assumption in Theorem 3.6 is 
also satisfied as a consequence of the index-theorem for pseudo-differential opera- 
tors on compact manifolds, [32, p. 105]. O 
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3.2. General Systems. In this final section we briefly show how the foregoing 
results can be extended to the more general systems (2.1). We consider systems 
where all single equations have the decomposition (2.10) with the same value a. For 
the systems let .A's = (Hs)P x Cq and define the bounded linear operator sl 
connected with the problem (2.1) by 

(3.34) (A ?) 

5': 
" -3-'s-2G (s to be fixed). Here A: (Hs)P (Hs2a)P, B: C q (Hs)P and 

A: (Hs) P C q are bounded linear mappings. The spaces .A's present Hilbert spaces 
endowed with corresponding natural scalar products. 

We now write the equation (2.1) in the form 

where q& = (u, t) andY= (f, ,/). 
The solution O E- .j+a- 1/2 will be approximated by the trial "functions" v= 

(V, p)? (V, ~) E $d(A):= (Sd(A))y X Cq. As in the previous section we require the 
restriction 

d> 2a, d>0, 
and denote] = d/2 + 1. In the Petrov-Galerkin type formulation of the collocation 
equations, i.e., 

(Au,A)(t1) +(BWoA)(tj) =f (t), j= 1,... ,N, 
(3.35) Au, = , 

we use the space of test functions $d+l(A)= (Sd+?(a))p X Cq. Moreover, we 
denote 

(A 0) 

By Lemma 3.1 the collocation equations for q& E 3A +a-1/2 are equivalent to finding 
&,j = (u,A, w,,) E Edj (A) such that 

KAAuA, u D)j = ( &, D).j for all D E Jd- (4 

The operator A can be written as 

(3.36) A = a+?P2+a + a P ?K 

where K: Hs - Hs-2a is compact for every s E R and where a+ and a are matrices. 
For definiteness we shall use the requirement 

(3.37) Re Ta? D > aoTA forall E CP, 

i.e., strong ellipticity (2.2) with e = I, the identity. Here we have 

THEOREM 3.8. Let sl: y,j+al/2 3 Oj--/2 be defined by (3.34) with A having 
the form (3.36), where a+ and a_ are matrices satisfying (3.37). Moreover, we assume 
that d is an isomorphism. Then, there exist positive numbers -yO and h 0 such that for all 
0 < h < h0 the Babuska stability condition (l * = sor sl 

inf sup I-sl v D)jl > Yo 

IvII j+a- 1/2=1 IVIllj+? + 1/21 

is valid. 
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Proof. If we handle compact and small perturbations as in the previous section, it 
suffices to consider the form 

(Av, p)j, V E (Sd(A)) , GE (Sd+1())E' 

where the operator 

(3.38) A = J+P2 ? Pi- 

is defined componentwise in any obvious way. We define the mapping Q: (Sd(?))P 
-) (Sd+J (a))P such that for a given element v E (Sd(l))P the components of Qv are 
defined by the rules (3.13) and (3.16) with the matrix decomposition a+= Re a++ 
i Ima +, where 

Rea+= 2(a++(a+)*) and Ima+= 2i(a+ 

we have 

(3.39) (a P2+j,,Qv)1 = (Rea+P2+,v, Qv)j + i(Ima+P2+v, Qv)j. 

One verifies that 

(3.40) (+Pu, Qv)j = ( P2av, Qu)j 

for all u E H?+G- 1/2 and v E Hi + + 1/2 (where Q is understood as scalar-valued). 
By using (3.40) we find that the last term in (3.39) is purely imaginary. The 
positive-definiteness (3.37) allows the representation Re a+= Pr F+ with some regu- 
lar invertible matrix IF+. Hence, we obtain from (3.39), 

Re(aPv Q eK+ +P2v, Qv)j = Re(P2+,F+v, QF V)j 
p 

= E Re(p2+(F+v)k, Q(]F+v)k)j. 
k=l 

Recalling the proof of Theorem 3.2, we find the lower bound 

p 

R(+P2aV9 QV)j > |2(+)k||+_/ 
(3.41) k=1 

> Y+ E 11(P2aV) k||i+a-112- 
k=1 

Similarly, we find 

p2 

(3.-42) Re(U-Piav, Qv)j > y E 11(PLP)k11i+a-112q 
k=1 

and accordingly with (3.38), (3.41) and (3.42), 

Re( Av, Qv)j > 7|| j+a- 1/2 >' -Yj1V1jl+.-11/211QV11i+a+ 1/2 

which yields the required assertion. 0 
Similarly as in the previous section the stability result of Theorem 3.8 together 

with the approximation and inverse properties provide the following convergence 
result. 
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THEOREM 3.9. Let the assumptions of Theorem 3.8 be valid. If u E (Hi +a-l/2)p, 

then the collocation equations (3.35) have a unique solution , E Ed ( AQ) for 0 < h < h 
and we have 

(3.43) IIU - UJj+a-1/2 ? I - < C inf IU - 

I?E=Sd (A) 

If, in addition, u E (Hs)P, j + a-1/2 S s S d + 1, then the asymptotic error 
estimates 

(3.44) ||u - uzl, + lw - < chs-t '|u||s 

are true for j + a - 1/2 < t S s. If t E [2a, j + a - 1/2] and if s* is (2(j + a) - 

t)-regular and if in the case t < 2a + 1/2, - a - 1/2 > 2, maps 72+2a bound- 
edly into 2, then we obtain 

(3.45) u - u'A? + - C h ch?al/ u- l+a1/2 

With the inverse assumption, (3.44) holds again for [2a < t S j + a - 1/2] if u E 
(H2)P,j + a - 1/2 < s < d + 1. 

The definition of the j-adjoint d* and the notion of s-regularity in case of the 
system are obvious. 

Finally, since the collocation equations (3.35) and the equations 

e(AuA)(tj) + eB(tj)WA = Ef(tj), j = 1,... .N, 

Au, = ,B 

are equivalent, we have corresponding to Theorem 3.7: 

THEOREM 3.10. Let A be a strongly elliptic system of pseudo-differential operators 
with a positive-homogeneous principal symbol a(() of degree 2a. Further, let #V: 
yej+cf-1/2 _ yej-a-1/2 be an isomorphism. For the lower-order estimates (3.44) with 

t E [2a, j + a - 1/2] we require in addition that #V: X' dt- 2 is injective. Then 
the statements of the previous Theorem 3.9 are all valid. 
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